A função que associa um elemento x a outro valor pode ser indicada por f(x). O aparecimento de x na simbologia da função não ocorre por acaso, uma vez que o valor f(x) depende de x. Por isso mesmo, x é chamada variável independente e f(x) (ou y) é chamada de variável dependente. Matematicamente a função é definida:
, ou mais simplificadamente,
Um exemplo de função: dado o conjunto dos números naturais, uma função pode associar cada número ao seu quadrado. Assim, essa função assumiria os valores: { 1,4,9,16,... }.
Uma função pode, na verdade, associar mais de um conjunto a outro; podem haver diversas variáveis independentes. Por exemplo: uma função pode tomar dois valores inteiros e expressar sua soma:
No entanto, neste livro será dada mais atenção às funções de uma variável, apenas. São duas características da função enquanto relação:
- há correspondência unívoca entre um elemento e o valor associado a ele pela função: isso significa que para cada valor assumido pela variável independente (x), há um único valor da variável dependente (y) associado pela função. Consequentemente, se t = f(x) e w = f(x), então t = w.
- a correspondência é total, ou seja, um valor assumido pela variável dependente estará associado para todo valor possível de ser assumido pela variável independente.
A tabela a seguir mostra dois exemplos de relações que não são funções:
Nesse caso, um mesmo elemento (3) do domínio X aparece associado a dois elementos do contradomínio Y (c,d). |
Aqui a correspondência não é total: falta um valor associado a 1. |
Já o diagrama a seguir representa uma função:
Duas funções f(x) e g(x) são ditas iguais (f = g) se e somente se para cada valor de x no domínio D, f(x) e g(x) assumam o mesmo valor:
Fonte da página: http://pt.wikibooks.org/wiki/Matem%C3%A1tica_elementar/Fun%C3%A7%C3%B5es
Nenhum comentário:
Postar um comentário