UOL HOST: Hospedagem de sites, Loja Virtual, Registro de domínios
Melhorando na Escola: Relações Trigonométricas num Triângulo Retângulo

Ads 468x60px

quarta-feira, 18 de março de 2015

Relações Trigonométricas num Triângulo Retângulo

A trigonometria é uma ferramenta matemática bastante utilizada no cálculo de distâncias envolvendo triângulos retângulos. Na antiguidade, matemáticos utilizavam o conhecimento adquirido em trigonometria para realizar cálculos ligados à astronomia, determinando a distância, quase que precisa, entre a Terra e os demais astros do sistema solar. Atualmente a trigonometria também é bastante utilizada e para compreender o seu uso é necessário assimilar alguns conceitos.

Observe a figura abaixo que representa um triângulo retângulo.


Note que o maior lado é denominado de hipotenusa e os outros dois lados de catetos. A hipotenusa é o lado que fica oposto ao ângulo reto (ângulo de 90º). Além do ângulo reto, há dois ângulos agudos, α e β. A trigonometria estabelece relações entre os ângulos agudos do triângulo retângulo e as medidas de seus lados. Vejamos quais são essas relações.

O seno de um ângulo no triângulo retângulo é a razão entre o cateto oposto e a hipotenusa.


O cosseno de um ângulo no triângulo retângulo é a razão entre o cateto adjacente e a hipotenusa.


A tangente de um ângulo no triângulo retângulo é a razão entre o cateto oposto e o cateto adjacente.


Definidas as razões trigonométricas, obtemos as seguintes igualdades para o triângulo retângulo abaixo:



Exemplo 1. Determine os valores de seno, cosseno e tangente dos ângulos agudos do triângulo abaixo.


Solução: Temos que


Exemplo 2. Sabendo que sen α =1/2 , determine o valor de x no triângulo retângulo abaixo:


Solução: A hipotenusa do triângulo é x e o lado com medida conhecida é o cateto oposto ao ângulo α. Assim, temos que:


Fonte da página: http://www.alunosonline.com.br/matematica/relacoes-trigonometricas-no-triangulo-retangulo.html

Nenhum comentário: